Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.591
Filtrar
1.
PLoS One ; 19(4): e0297844, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578758

RESUMO

The present study aims to investigate the influence of zeolite usage and stocking densities on various parameters, including ammonia removal from water, accumulation of heavy metals in fish organs, water quality, growth performance, feed efficiency, muscle composition, as well as hematological and biochemical parameters in European seabass (Dicentrarchus labrax) over a 90-day duration. A total of 2400 D. labrax with an initial weight of 9.83 ± 2.02 g and initial length of 9.37 ± 0.32 cm were distributed among 24 tanks. The research involved six distinct treatment groups, with two different zeolite levels (0 and 15 ppt) and three stocking density levels (50, 100, and 150 fish/m3), each replicated four times. The results of the research demonstrate a statistically significant improvement (p < 0.05) in water quality measures with the introduction of zeolite. The successful implementation of this amendment mitigated the adverse effects of fish density on water quality parameters. Higher stocking density negatively impacted European sea bass growth, feed utilization, and hemato-biochemical indicators. Zeolite use effectively alleviated these adverse effects, particularly on performance, feed utilization, hematological, and biochemical parameters. The study's results indicate that the utilization of zeolite has shown to be efficacious in mitigating the accumulation of heavy metals in both water and fish organs, while concurrently augmenting fish attributes. However, the increase in density led to a significant decrease in the accumulation of heavy metals in both water and fish organs. The present study highlights the capacity of natural zeolites to mitigate the negative consequences associated with water quality concerns. The efficiency of these zeolites in limiting the accessibility of heavy metals in polluted water is shown, hence minimizing their accumulation in fish organs. In addition, the improvement of fish performance has the capacity to have a beneficial influence on both the well-being and efficiency of fish in aquaculture. Additional research is essential to fully understand the complex molecular pathways involved in utilizing natural zeolite under different fish densities.


Assuntos
Bass , Metais Pesados , Zeolitas , Animais , Bass/fisiologia , Amônia/metabolismo , Metais Pesados/metabolismo , Músculos/metabolismo
2.
Ecotoxicol Environ Saf ; 273: 116160, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38432157

RESUMO

High alkaline environment can lead to respiratory alkalosis and ammonia toxification to freshwater fish. However, the Amur ide (Leuciscus waleckii), which inhabits an extremely alkaline lake in China with titratable alkalinity up to 53.57 mM (pH 9.6) has developed special physiological and molecular mechanisms to adapt to such an environment. Nevertheless, how the Amur ide can maintain acid-base balance and perform ammonia detoxification effectively remains unclear. Therefore, this study was designed to study the ammonia excretion rate (Tamm), total nitrogen accumulation in blood and tissues, including identification, expression, and localization of ammonia-related transporters in gills of both the alkali and freshwater forms of the Amur ide. The results showed that the freshwater form Amur ide does not have a perfect ammonia excretion mechanism exposed to high-alkaline condition. Nevertheless, the alkali form of Amur ide was able to excrete ammonia better than freshwater from Amur ide, which was facilitated by the ionocytes transporters (Rhbg, Rhcg1, Na+/H+ exchanger 2 (NHE2), and V-type H+ ATPase (VHA)) in the gills. Converting ammonia into urea served as an ammonia detoxication strategy to reduced endogenous ammonia accumulation under high-alkaline environment.


Assuntos
Amônia , Cipriniformes , Animais , Amônia/toxicidade , Amônia/metabolismo , Lagos , Proteínas de Membrana Transportadoras/metabolismo , Álcalis , Brânquias/metabolismo
3.
Biomolecules ; 14(3)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540788

RESUMO

(1) Background: Valproic acid (VPA) is one of the frequently prescribed antiepileptic drugs and is generally considered well tolerated. However, VPA neurologic adverse effects in the absence of liver failure are fairly common, suggesting that in the mechanism for the development of VPA-induced encephalopathy, much more is involved than merely the exposure to hyperammonemia (HA) caused by liver insufficiency to perform detoxification. Taking into account the importance of the relationship between an impaired brain energy metabolism and elevated ammonia production, and based on the ability of VPA to interfere with neuronal oxidative pathways, the current study intended to investigate a potential regional ammoniagenic effect of VPA on rats' brains by determining activities of the enzymes responsible for ammonia production and neutralization. (2) Methods: Rats received a single intraperitoneal injection of VPA (50, 100, 250, 500 mg/kg). Plasma, the neocortex, the cerebellum, and the hippocampus were collected at 30 min after injection. The levels of ammonia, urea, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured in blood plasma. The activities of glutaminase and glutamate dehydrogenase (GDH) in mitochondria and the activities of AMP deaminase (AMPD), adenosine deaminase (ADA), and glutamine synthetase (GS) in cytosolic fractions isolated from rat brain regions were measured. Ammonia, ALT, and AST values were determined in the mitochondrial and cytosolic fractions. (3) Results: Multi-dose VPA treatment did not significantly affect the plasma levels of ammonia and urea or the ALT and AST liver enzymes. Significant dose-independent increases in the accumulation of ammonia were found only in the cytosol from the cerebellum and there was a strong correlation between the ammonia level and the ADA activity in this brain structure. A significant decrease in the AMPD and AST activities was observed, while the ALT activity was unaffected. Only the highest VPA dose (500 mg/kg) was associated with significantly less activity of GS compared to the control in all studied brain structures. In the mitochondria of all studied brain structures, VPA caused a dose-independent increases in ammonia levels, a high concentration of which was strongly and positively correlated with the increased GDH and ALT activity, while glutaminase activity remained unchanged, and AST activity significantly decreased compared to the control in all studied brain structures. (4) Conclusions: This study highlights the rat brain region-specific ammoniagenic effects of VPA, which may manifest themselves in the absence of hyperammonemia. Further research should analyze how the responsiveness of the different brain regions may vary in VPA-treated animals that exhibit compromised energy metabolism, leading to increased ammoniagenesis.


Assuntos
Hiperamonemia , Ácido Valproico , Ratos , Animais , Ácido Valproico/efeitos adversos , Glutaminase , Hiperamonemia/induzido quimicamente , Hiperamonemia/metabolismo , Amônia/metabolismo , Ureia
4.
Pflugers Arch ; 476(4): 517-531, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448728

RESUMO

The disposal of ammonia, the main proton buffer in the urine, is important for acid-base homeostasis. Renal ammonia excretion is the predominant contributor to renal net acid excretion, both under basal condition and in response to acidosis. New insights into the mechanisms of renal ammonia production and transport have been gained in the past decades. Ammonia is the only urinary solute known to be produced in the kidney and selectively transported through the different parts of the nephron. Both molecular forms of total ammonia, NH3 and NH4+, are transported by specific proteins. Proximal tubular ammoniagenesis and the activity of these transport processes determine the eventual fate of total ammonia produced and excreted by the kidney. In this review, we summarized the state of the art of ammonia handling by the kidney and highlighted the newest processes described in the last decade.


Assuntos
Acidose , Amônia , Humanos , Amônia/metabolismo , Equilíbrio Ácido-Base/fisiologia , Rim/metabolismo , Homeostase/fisiologia , Acidose/metabolismo
5.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513071

RESUMO

This experiment was conducted to evaluate the effects of including a mixed-dimensional attapulgite clay (MDA) into a naturally moldly diet for Hu lambs. Fifty male Hu lambs with similar initial body weight (28.24 ±â€…1.80 kg) were randomly allocated into five dietary treatments: a basal diet containing naturally occurring mycotoxins with 0, 0.5, 1.0, and 2.0 kg/t MDA, and basal diet with a commercial mycotoxin adsorbent Solis with montmorillonite as the major component at 1 kg/t. Both MDA and Solis increased average daily gain (ADG) and dry matter intake (DMI; P ≤ 0.004), and there was no difference in growth performance between MDA and Solis (P ≥ 0.26). The final body weight, DMI, and ADG were linearly increased with increasing MDA supplementation (P < 0.01). Lambs treated with both MDA and Solis demonstrated greater apparent digestibility of dry matter (DM), organic matter (OM), and energy compared with the control group (P ≤ 0.03), and there were no differences in nutrient digestibilities between MDA and Solis (P ≥ 0.38). Digestibility of CP was linearly increased with the increasing MDA supplementation (P = 0.01). Neither MDA nor Solis affected rumen total volatile fatty acid (TVFA) concentration (P ≥ 0.39), but decreased the acetate-to-propionate ratio and molar proportion of n-butyrate (P ≤ 0.01), and MDA also increased the concentration of ammonia (P = 0.003). Besides, increasing MDA supplementation linearly reduced the acetate-to-propionate ratio and molar proportion of n-butyrate (P = 0.01), but linearly and quadratically increased the concentration of ammonia (P ≥ 0.003). These results showed that the incorporation of MDA into a naturally moldy diet of Hu lambs yielded comparable results to the Solis product, with higher growth performance and nutrient digestibility but lower acetate-to-propionate ratio observed. In conclusion, including ≥ 1 kg/t of MDA in high mycotoxin risk diets for growing lambs improves feed intake and rumen fermentation.


The issue of mycotoxin-contaminated animal feed has consistently presented a significant challenge in relation to animal health and production. The mixed-dimensional attapulgite clay (MDA) has been proven effective in binding polar mycotoxins such as aflatoxin, while also effectively adsorbing hydrophobic or weakly polar mycotoxins such as zearalenone (ZEN) and ochratoxin. Therefore, this study was undertaken to assess the impact of MDA inclusion in mycotoxin-contaminated diets on performance and rumen fermentation variables in lambs. The results indicated that MDA not only significantly improved the growth performance and nutrient digestibility of Hu lambs but also enhanced the molar proportion of propionate and ammonia concentration, and reduced the acetate to propionate ratio and the molar proportion of n-butyrate.


Assuntos
Compostos de Magnésio , Micotoxinas , Rúmen , Compostos de Silício , Ovinos , Animais , Masculino , Argila , Rúmen/metabolismo , Propionatos/metabolismo , Fermentação , Amônia/metabolismo , Digestão , Dieta/veterinária , Carneiro Doméstico , Ingestão de Alimentos , Acetatos/metabolismo , Butiratos/metabolismo , Peso Corporal , Ração Animal/análise
6.
Nat Commun ; 15(1): 2226, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472276

RESUMO

Hepatic encephalopathy is a neuropsychiatric complication of liver disease which is partly associated with elevated ammonemia. Urea hydrolysis by urease-producing bacteria in the colon is often mentioned as one of the main routes of ammonia production in the body, yet research on treatments targeting bacterial ureases in hepatic encephalopathy is limited. Herein we report a hydroxamate-based urease inhibitor, 2-octynohydroxamic acid, exhibiting improved in vitro potency compared to hydroxamic acids that were previously investigated for hepatic encephalopathy. 2-octynohydroxamic acid shows low cytotoxic and mutagenic potential within a micromolar concentration range as well as reduces ammonemia in rodent models of liver disease. Furthermore, 2-octynohydroxamic acid treatment decreases cerebellar glutamine, a product of ammonia metabolism, in male bile duct ligated rats. A prototype colonic formulation enables reduced systemic exposure to 2-octynohydroxamic acid in male dogs. Overall, this work suggests that urease inhibitors delivered to the colon by means of colonic formulations represent a prospective approach for the treatment of hepatic encephalopathy.


Assuntos
Encefalopatia Hepática , Hepatopatias , Cães , Masculino , Ratos , Animais , Encefalopatia Hepática/metabolismo , Urease/metabolismo , Amônia/metabolismo , Glutamina , Bactérias/metabolismo
7.
Cells ; 13(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38534391

RESUMO

Previously, we successfully established a highly functional, three-dimensional hepatocyte-like cell (3D-HLC) model from adipose-derived mesenchymal stem cells (ADSCs) via a three-step differentiation protocol. The aim of the present study was to investigate whether generating hepatocyte-like organoids (H-organoids) by adding endothelial cells further improved the liver-like functionality of 3D-HLCs and to assess H-organoids' immunogenicity properties. Genes representing liver maturation and function were detected by quantitative reverse transcription-PCR analysis. The expression of hepatic maturation proteins was measured using immunofluorescence staining. Cytochrome P (CYP)450 metabolism activity and ammonia metabolism tests were used to assess liver function. H-organoids were successfully established by adding human umbilical vein endothelial cells at the beginning of the definitive endoderm stage in our 3D differentiation protocol. The gene expression of alpha-1 antitrypsin, carbamoyl-phosphate synthase 1, and apolipoprotein E, which represent liver maturation state and function, was higher in H-organoids than non-organoid 3D-HLCs. H-organoids possessed higher CYP3A4 metabolism activity and comparable ammonia metabolism capacity than 3D-HLCs. Moreover, although H-organoids expressed human leukocyte antigen class I, they expressed little human leukocyte antigen class II, cluster of differentiation (CD)40, CD80, CD86, and programmed cell death ligand 1, suggesting their immunogenicity properties were not significantly upregulated during differentiation from ADSCs. In conclusion, we successfully established an H-organoid model with higher liver-like functionality than previously established 3D-HLCs and comparable immunogenicity to ADSCs.


Assuntos
Amônia , Células-Tronco Mesenquimais , Humanos , Amônia/metabolismo , Hepatócitos/metabolismo , Células Endoteliais da Veia Umbilical Humana , Células-Tronco Mesenquimais/metabolismo , Organoides/metabolismo , Antígenos HLA/metabolismo
8.
Chemosphere ; 353: 141580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430943

RESUMO

Information on biotransformation of antivirals in the side-stream partial nitritation (PN) process was limited. In this study, a side-stream PN sludge was adopted to investigate favipiravir biotransformation under controlled ammonium and pH levels. Results showed that free nitrous acid (FNA) was an important factor that inhibited ammonia oxidation and the cometabolic biodegradation of favipiravir induced by ammonia oxidizing bacteria (AOB). The removal efficiency of favipiravir reached 12.6% and 35.0% within 6 days at the average FNA concentrations of 0.07 and 0.02 mg-N L-1, respectively. AOB-induced cometabolism was the sole contributing mechanism to favipiravir removal, excluding AOB-induced metabolism and heterotrophic bacteria-induced biodegradation. The growth of Escherichia coli was inhibited by favipiravir, while the AOB-induced cometabolism facilitated the alleviation of the antimicrobial activities with the formed transformation products. The biotransformation pathways were proposed based on the roughly identified structures of transformation products, which mainly involved hydroxylation, nitration, dehydrogenation and covalent bond breaking under enzymatic conditions. The findings would provide insights on enriching AOB abundance and enhancing AOB-induced cometabolism under FNA stress when targeting higher removal of antivirals during the side-stream wastewater treatment processes.


Assuntos
Amidas , Compostos de Amônio , Pirazinas , Esgotos , Amônia/toxicidade , Amônia/metabolismo , Rios , Oxirredução , Ácido Nitroso , Biotransformação , Antivirais/toxicidade , Reatores Biológicos , Nitritos
9.
Artigo em Inglês | MEDLINE | ID: mdl-38438092

RESUMO

The excretory mechanisms of stenohaline marine osmoconforming crabs are often compared to those of the more extensively characterized euryhaline osmoregulating crabs. These comparisons may have limitations, given that unlike euryhaline brachyurans the gills of stenohaline marine osmoconformers possess ion-leaky paracellular pathways and lack the capacity to undergo ultrastructural changes that can promote ion-transport processes in dilute media. Furthermore, the antennal glands of stenohaline marine osmoconformers are poorly characterized making it difficult to determine what role urinary processes play in excretion. In the presented study, ammonia excretory processes as well as related acid-base equivalent transport rates and mechanisms were investigated in the Dungeness crab, Metacarcinus magister - an economically valuable stenohaline marine osmoconforming crab. Isolated and perfused gills were found to predominantly eliminate ammonia through a microtubule network-dependent active NH4+ transport mechanism that is likely performed by cells lining the arterial pockets of the gill lamella where critical Na+/K+-ATPase detection was observed. The V-type H+-ATPase - a vital component to transbranchial ammonia excretion mechanisms of euryhaline crabs - was not found to contribute significantly to ammonia excretion; however, this may be due to the transporter's unexpected apical localization. Although unconnected to ammonia excretion rates, a membrane-bound isoform of carbonic anhydrase was localized to the apical and basolateral membranes of lamella suited for respiration. Urine was found to contain significantly less ammonia as well as carbonate species than the hemolymph, indicating that unlike those of some euryhaline crabs the antennal glands of the Dungeness crab reabsorb these molecules rather than eliminate them for excretion.


Assuntos
Braquiúros , ATPases Vacuolares Próton-Translocadoras , Animais , Amônia/metabolismo , Brânquias/metabolismo , Transporte Biológico , Sódio/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Braquiúros/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo
10.
Sci Total Environ ; 923: 171395, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38447730

RESUMO

Ammonia-oxidizing microorganisms, including AOA (ammonia-oxidizing archaea), AOB (ammonia-oxidizing bacteria), and Comammox (complete ammonia oxidization) Nitrospira, have been reported to possess the capability for the biotransformation of sulfonamide antibiotics. However, given that nitrifying microorganisms coexist and operate as communities in the nitrification process, it is surprising that there is a scarcity of studies investigating how their interactions would affect the biotransformation of sulfonamide antibiotics. This study aims to investigate the sulfamonomethoxine (SMM) removal efficiency and mechanisms among pure cultures of phylogenetically distinct nitrifiers and their combinations. Our findings revealed that AOA demonstrated the highest SMM removal efficiency and rate among the pure cultures, followed by Comammox Nitrospira, NOB, and AOB. However, the biotransformation of SMM by AOA N. gargensis is reversible, and the removal efficiency significantly decreased from 63.84 % at 167 h to 26.41 % at 807 h. On the contrary, the co-culture of AOA and NOB demonstrated enhanced and irreversible SMM removal efficiency compared to AOA alone. Furthermore, the presence of NOB altered the SMM biotransformation of AOA by metabolizing TP202 differently, possibly resulting from reduced nitrite accumulation. This study offers novel insights into the potential application of nitrifying communities for the removal of sulfonamide antibiotics (SAs) in engineered ecosystems.


Assuntos
Sulfamonometoxina , Sulfamonometoxina/metabolismo , Amônia/metabolismo , Ecossistema , Microbiologia do Solo , Oxirredução , Filogenia , Bactérias/metabolismo , Archaea/metabolismo , Nitrificação , Biotransformação , Antibacterianos/metabolismo , Sulfanilamida/metabolismo
11.
Environ Microbiol ; 26(3): e16601, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454574

RESUMO

Thaumarchaeota are predominant in oligotrophic habitats such as deserts and arid soils, but their adaptations to these arid conditions are not well understood. In this study, we assembled 23 Thaumarchaeota genomes from arid and semi-arid soils collected from the Inner Mongolia Steppe and the Qinghai-Tibet Plateau. Using a comparative genomics approach, integrated with 614 Thaumarchaeota genomes from public databases, we identified the traits and evolutionary forces that contribute to their adaptations to aridity. Our results showed that the newly assembled genomes represent an early diverging group within the lineage of ammonia-oxidising Thaumarchaeota. While the genomic functions previously identified in arid soil lineages were conserved across terrestrial, shallow-ocean and deep-ocean lineages, several traits likely contribute to Thaumarchaeota's adaptation to aridity. These include chlorite dismutase, arsenate reductase, V-type ATPase and genes dealing with oxidative stresses. The acquisition and loss of traits at the last common ancestor of arid soil lineages may have facilitated the specialisation of Thaumarchaeota in arid soils. Additionally, the acquisition of unique adaptive traits, such as a urea transporter, Ca2+ :H+ antiporter, mannosyl-3-phosphoglycerate synthase and phosphatase, DNA end-binding protein Ku and phage shock protein A, further distinguishes arid soil Thaumarchaeota. This study provides evidence for the adaptations of Thaumarchaeota to arid soil, enhancing our understanding of the nitrogen and carbon cycling driven by Thaumarchaeota in drylands.


Assuntos
Amônia , Solo , Filogenia , Amônia/metabolismo , Microbiologia do Solo , Oxirredução , Archaea/genética , Archaea/metabolismo , Genômica
12.
Nat Commun ; 15(1): 1911, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429292

RESUMO

When the supply of inorganic carbon is limiting, photosynthetic cyanobacteria excrete nitrite, a toxic intermediate in the ammonia assimilation pathway from nitrate. It has been hypothesized that the excreted nitrite represents excess nitrogen that cannot be further assimilated due to the missing carbon, but the underlying molecular mechanisms are unclear. Here, we identified a protein that interacts with nitrite reductase, regulates nitrogen metabolism and promotes nitrite excretion. The protein, which we named NirP1, is encoded by an unannotated gene that is upregulated under low carbon conditions and controlled by transcription factor NtcA, a central regulator of nitrogen homeostasis. Ectopic overexpression of nirP1 in Synechocystis sp. PCC 6803 resulted in a chlorotic phenotype, delayed growth, severe changes in amino acid pools, and nitrite excretion. Coimmunoprecipitation experiments indicated that NirP1 interacts with nitrite reductase, a central enzyme in the assimilation of ammonia from nitrate/nitrite. Our results reveal that NirP1 is widely conserved in cyanobacteria and plays a crucial role in the coordination of C/N primary metabolism by targeting nitrite reductase.


Assuntos
Nitritos , Synechocystis , Nitritos/metabolismo , Nitratos/metabolismo , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Amônia/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Synechocystis/genética , Synechocystis/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Nitrato Redutase/genética , Nitrato Redutase/metabolismo
13.
Sci Total Environ ; 924: 171576, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38461997

RESUMO

Ammonia pollution is an important environmental stress factors in water eutrophication. The intrinsic effects of ammonia stress on liver toxicity and muscle quality of rainbow trout were still unclear. In this study, we focused on investigating difference in muscle metabolism caused by metabolism disorder of rainbow trout liver at exposure times of 0, 3, 6, 9 h at 30 mg/L concentrations. Liver transcriptomic analysis revealed that short-term (3 h) ammonia stress inhibited carbohydrate metabolism and glycerophospholipid production but long-term (9 h) ammonia stress inhibited the biosynthesis and degradation of fatty acids, activated pyrimidine metabolism and mismatch repair, lead to DNA strand breakage and cell death, and ultimately caused liver damage. Metabolomic analysis of muscle revealed that ammonia stress promoted the reaction of glutamic acid and ammonia to synthesize glutamine to alleviate ammonia toxicity, and long-term (9 h) ammonia stress inhibited urea cycle, hindering the alleviation of ammonia toxicity. Moreover, it accelerated the consumption of flavor amino acids such as arginine and aspartic acid, and increased the accumulation of bitter substances (xanthine) and odorous substances (histamine). These findings provide valuable insights into the potential risks and hazards of ammonia in eutrophic water bodies subject to rainbow trout.


Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/fisiologia , Amônia/toxicidade , Amônia/metabolismo , Fígado/metabolismo , Músculos/metabolismo , Água/metabolismo
14.
Water Res ; 254: 121381, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442606

RESUMO

The role of ray radiation from the sunlight acting on organisms has long-term been investigated. However, how the light with different wavelengths affects nitrification and the involved nitrifiers are still elusive. Here, we found more than 60 % of differentially expressed genes (DEGs) in nitrifiers were observed under irradiation of blue light with wavelengths of 440-480 nm, which were 13.4 % and 20.3 % under red light and white light irradiation respectively. Blue light was more helpful to achieve partial nitrification rather than white light or red light, where ammonium oxidization by ammonia-oxidizing archaea (AOA) with the increased relative abundance from 8.6 % to 14.2 % played a vital role. This was further evidenced by the enhanced TCA cycle, reactive oxygen species (ROS) scavenge and DNA repair capacity in AOA under blue-light irradiation. In contrast, nitrite-oxidizing bacteria (NOB) was inhibited severely to achieve partial nitrification, and the newly discovered encoded blue light photoreceptor proteins made them more sensitive to blue light and hindered cell activity. Ammonia-oxidizing bacteria (AOB) expressed genes for DNA repair capacity under blue-light irradiation, which ensured their tiny impact by light irradiation. This study provided valuable insights into the photosensitivity mechanism of nitrifiers and shed light on the diverse regulatory by light with different radiation wavelengths in artificial systems, broadening our comprehension of the nitrogen cycle on earth.


Assuntos
Amônia , Nitrificação , Amônia/metabolismo , Solo , Oxirredução , Microbiologia do Solo , Filogenia , Archaea/genética , Archaea/metabolismo
15.
Water Res ; 254: 121432, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38461606

RESUMO

Chloramination is an effective strategy for eliminating pathogens from drinking water and repressing their regrowth in water distribution systems. However, the inevitable release of NH4+ potentially promotes nitrification and associated ammonia-oxidizing bacteria (AOB) contamination. In this study, AOB (Nitrosomona eutropha) were isolated from environmental water and treated with two disinfection stages (chloramine disinfection and chloramine residues) to investigate the occurrence mechanisms of AOB in chloramination. The results showed that N. eutropha had considerable resistance to monochloramine compared to Escherichia coli, whose inactivation rate constant was 19.4-fold lower. The higher resistance was attributed to high levels of extracellular polymer substances (EPS) in AOB, which contribute to AOB surviving disinfection and entering the distribution system. In AOB response to the chloramine residues stage, the respiratory activity of N. eutropha remained at a high level after three days of continuous exposure to high chloramine residue concentrations (0.5-1.5 mg/L). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) suggested that the mechanism of N. eutropha tolerance involved a significantly high expression of the intracellular oxidative stress-regulating (sodB, txrA) and protein-related (NE1545, NE1546) genes. Additionally, this process enhanced EPS secretion and promoted biofilm formation. Adhesion predictions based on the XDLVO theory corroborated the trend of biofilm formation. Overall, the naturally higher resistance contributed to the survival of AOB in primary disinfection; the enhanced antioxidant response of surviving N. eutropha accompanied by biofilm formation was responsible for their increased resistance to the residual chloramines.


Assuntos
Água Potável , Purificação da Água , Antioxidantes , Abastecimento de Água , Purificação da Água/métodos , Cloraminas/química , Desinfecção/métodos , Biofilmes , Amônia/metabolismo
16.
Biochem Pharmacol ; 222: 116034, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38307136

RESUMO

The urea cycle (UC) is a critically important metabolic process for the disposal of nitrogen (ammonia) produced by amino acids catabolism. The impairment of this liver-specific pathway induced either by primary genetic defects or by secondary causes, namely those associated with hepatic disease or drug administration, may result in serious clinical consequences. Urea cycle disorders (UCD) and certain organic acidurias are the major groups of inherited rare diseases manifested with hyperammonemia (HA) with UC dysregulation. Importantly, several commonly prescribed drugs, including antiepileptics in monotherapy or polytherapy from carbamazepine to valproic acid or specific antineoplastic agents such as asparaginase or 5-fluorouracil may be associated with HA by mechanisms not fully elucidated. HA, disclosing an imbalance between ammoniagenesis and ammonia disposal via the UC, can evolve to encephalopathy which may lead to significant morbidity and central nervous system damage. This review will focus on biochemical mechanisms related with HA emphasizing some poorly understood perspectives behind the disruption of the UC and mitochondrial energy metabolism, namely: i) changes in acetyl-CoA or NAD+ levels in subcellular compartments; ii) post-translational modifications of key UC-related enzymes, namely acetylation, potentially affecting their catalytic activity; iii) the mitochondrial sirtuins-mediated role in ureagenesis. Moreover, the main UCD associated with HA will be summarized to highlight the relevance of investigating possible genetic mutations to account for unexpected HA during certain pharmacological therapies. The ammonia-induced effects should be avoided or overcome as part of safer therapeutic strategies to protect patients under treatment with drugs that may be potentially associated with HA.


Assuntos
Hiperamonemia , Hepatopatias , Humanos , Hiperamonemia/tratamento farmacológico , Hiperamonemia/etiologia , Hiperamonemia/metabolismo , Amônia/metabolismo , Ureia/uso terapêutico
17.
Sci Total Environ ; 920: 170914, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38354808

RESUMO

Ammonia and microcystin-LR (MC-LR) are both toxins that can be in eutrophic waters during cyanobacterial blooms. While previous studies have focused on the effects of ammonia exposure on fish neurobehavioral toxicity, little attention has been given to the effects of MC-LR and combined exposures to both. This study exposed adult female zebrafish to ammonia (30 mg/L) and MC-LR (10 µg/L) alone and in combination for 30 days to investigate their neurotoxic effects and underlying mechanisms. Behavioral results showed that exposure to ammonia and MC-LR, both alone and in combination, led to decreased locomotor activity and increased anxiety in fish. Histomorphological analysis revealed the formation of thrombi and vacuolization in the brain across all exposure groups. Exposure to ammonia and MC-LR resulted in significant increases in MDA contents, decreases in Mn-SOD activities, and alterations in GSH contents compared to the control. Single and combined exposure to ammonia and MC-LR also induced the release of inflammatory factors (IL-1ß and TNF-α) by activating the NOD/NF-κB signaling pathway. Furthermore, both ammonia and MC-LR significantly changed the expression of genes related to the glutamatergic and GABAergic systems, elevated Glu and GABA contents, as well as increased the Glu/GABA ratio, indicating that a shift towards increased Glu levels. Overall, these findings suggested that exposure to MC-LR and ammonia, individually and in combination, could decrease locomotor activity and increase anxiety of female zebrafish. This was likely due to brain damage from over-activated ROS and the release of pro-inflammatory cytokines, which led to a disruption in the balance of glutamatergic and GABAergic systems. However, there was no significant interaction between MC-LR and ammonia in fish neurobehavioral toxicity.


Assuntos
Toxinas Marinhas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Feminino , Peixe-Zebra/metabolismo , Amônia/toxicidade , Amônia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ácido Glutâmico/metabolismo , Microcistinas/toxicidade , Microcistinas/metabolismo , Inflamação/induzido quimicamente , Ácido gama-Aminobutírico/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
18.
Environ Microbiol ; 26(2): e16578, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38350645

RESUMO

Big Soda Lake, Nevada, is a multi-extreme meromictic lake, whose hypersaline hyperalkaline bottom waters feature permanent anoxia and high concentrations of arsenic, sulphide and ammonia. These properties make Big Soda Lake-and the adjacent Little Soda Lake-a fascinating system for exploring life's boundaries, discovering novel microbial taxa and identifying biotechnologically useful strains. To date, the taxonomic diversity and metabolic capabilities of microorganisms in this system remain largely unknown. Here, we fill this gap using microbiome surveys across the Big and Little Soda Lake water columns, including 16S rRNA sequencing, fungal ITS2 sequencing and gene- and genome-resolved metagenomics. We accompany these surveys with measurements of salinity, pH, temperature, oxygen, ammonium and ammonia concentrations. Our analyses reveal rich bacterial communities, taxonomically and functionally differentiated along Big Soda Lake's oxycline and, to lesser extent, between lakes. Fungal communities were dominated by a small number of families, while nearly no archaea were detected. Pathways related to perchlorate reduction, anoxygenic phototrophy, fermentation, dissimilatory metabolism of arsenite/arsenate, sulphur compounds, nitrogen compounds and hydrogen, were particularly prevalent. A total of 129 high-quality bacterial and archaeal metagenome-assembled genomes (completeness ≥ 80%, contamination ≤ 5%) were recovered, yielding insight into the taxonomic distribution of microbial metabolic pathways.


Assuntos
Amônia , Lagos , Humanos , Lagos/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Amônia/metabolismo , Nevada , Filogenia , Bactérias
20.
Bioresour Technol ; 397: 130462, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369083

RESUMO

The integration of powdered activated carbon and biofilm carriers in a membrane bioreactor (MBR) presents a promising approach to address the challenge of long hydraulic retention time (HRT) for nitrification of hydrolysed urine. This study investigated the effect of the incorporation in the MBR on microbial dynamics, focusing on dominant nitrifying bacteria. The results showed that significant shifts in microbial compositions were observed with the feed transition to full-strength urine and across different sludge growth forms. Remarkably, the nitrite-oxidizing bacteria Nitrospira were highly enriched in the suspended sludge. Simultaneously, ammonia-oxidizing bacteria, Nitrosococcaceae thrived in the attached biomass, showing a significant seven-fold increase in relative abundance compared to its suspended counterpart. Consequently, the incorporated MBR displayed 36% higher nitrification rate and 40% HRT reduction compared to the conventional MBR. This study provides valuable insights on the potential development of household or building scale on-site nutrient recovery from urine to fertiliser.


Assuntos
Microbiota , Nitrificação , Esgotos/microbiologia , Carvão Vegetal/metabolismo , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Biofilmes , Amônia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...